Exercise

• Open “EncryptionTrivia.docx”
• Go through each scenario and add
 • C for “Confidentiality”
 • I for “Integrity”
 • NR for “non-repudiation”
Confidentiality, integrity, non-repudiation?

- **M + H(M)**
 - No confidentiality bc M is in clear
 - Maybe integrity – if we send M from A to B, we cannot send H(M) bc Mallory can replace M and recalculate H(M), for integrity we have to store H(M) somewhere so B can get it through a separate channel or we have to encrypt it or generate a MIC
 - No non-repudiation bc we don’t have signatures in this scenario

- **M + E(H(M))**
 - No conf, bc M is in clear
 - Integrity and NR depend on how key is shared:
 - **M + E_{sharedK}(H(M))**
 - yes integrity bc only A and B know the sharedK
 - no NR bc A and B both have sharedK so they both could have sent the message
 - **M + E_{privA}(H(M))**
 - yes integrity bc only A knows privA
 - yes NR bc A only A knows privA
 - **M + E_{pubB}(H(M))**
 - no integrity bc pubB and H are both public
 - no NR bc pubB and H are both public
Confidentiality, integrity, non-repudiation?

- \(M + H(E(M)) \)
 - No conf bc \(M \) is in clear
 - For integrity and NR, let’s look at different versions of \(E \):
 - \(M + H(E_{\text{shared}}(M)) \)
 - yes integrity, but this is more expensive bc encrypting a big \(M \) is more expensive than encrypting a small hash
 - no NR
 - \(M + H(E_{\text{priv}}(M)) \)
 - no integrity
 - no NR, no one can check \(H(E_{\text{priv}}(M)) \)
 - \(M + H(E_{\text{pub}}(M)) \)
 - no integrity bc \(\text{pubB} \) and \(H \) are both public
 - no NR
Confidentiality, integrity, non-repudiation?

- $E(M) + H(M)$
 - $E_{sharedK}(M) + H(M)$
 - yes conf. bc only B and A can read the message
 - yes integrity bc Mallory doesn’t have sharedK and cannot generate $H(M)$ to fit M and she cannot retrieve M from encrypted content
 - no NR bc sharedK is used to encrypt
 - $E_{privA}(M) + H(M)$
 - no conf bc everyone can read w pubA
 - yes integrity bc Mallory doesn’t have privA and she cannot change M to M_1 without B noticing that two pieces don’t fit together
 - yes NR bc we are encrypting w privA
 - $E_{pubB}(M) + H(M)$
 - yes conf bc only B has privB and can decrypt the message
 - no integrity bc everyone knows pub and H
 - no NR
 - $E_{sharedK}(M)$
 - we could have integrity here even without $H(M)$ only if M has a known format, otherwise if M is random we need $H(M)$
 - Yes conf
 - No NR
 - $E_{privA}(M)$
 - No conf bc everyone can read w pubA
 - we could have integrity here even without $H(M)$ only if M has a known format, otherwise if M is random we need $H(M)$, same goes for NR
When/How to Encrypt/Hash?

- Confidentiality, integrity, non-repudiation
 - $E(M) + H(E(M))$
 - $E_{\text{shared}}(M) + H(E_{\text{shared}}(M))$
 - yes conf, yes integrity but the second encryption is wasteful, no NR
 - $E_{\text{shared}}(M) + H(E_{\text{privA}}(M))$
 - yes conf, no integrity bc B cannot check the second chunk, he does not have privA, no NR **
 - $E_{\text{shared}}(M) + H(E_{\text{pubB}}(M))$
 - yes conf, yes integrity but the second encryption is wasteful, no NR bc everyone knows pubB so B can produce $H(E_{\text{pubB}}(M))$ ***
 - $E_{\text{privA}}(M) + H(E_{\text{shared}}(M))$
 - no conf bc everyone has pubA, yes integrity but the second encryption is wasteful, yes NR
 - $E_{\text{privA}}(M) + H(E_{\text{privA}}(M))$
 - no conf bc everyone has pubA, no integrity because B cannot verify the second chunk, no NR **
 - $E_{\text{privA}}(M) + H(E_{\text{pubB}}(M))$
 - no conf bc everyone has pubA, yes integrity for regular, non-random message from just $E_{\text{privA}}(M)$, and we have integrity for random messages with the second chunk, yes NR chunk, yes NR ***