Summary From the Last Lecture

- Key exchange
 - Kerberos
 - Digital certificates
- Certificate authority structure
 - PGP, hierarchical model
- Recovery from exposed keys
 - Revocation lists, time-limited keys, real time validation
- Group key management
 - Robustness, forward/backward secrecy

Basis for Authentication

- Ideally
 - Who you are
- Practically
 - Something you know
 - Something you have
 - Something about you

Something You Know

- Password or Algorithm
 - e.g. encryption key derived from password
- Issues
 - Someone else may learn it
 - Find it, sniff it, trick you into providing it
 - Other party must know how to check
 - You must remember it

Password Authentication

- Alice inputs her password, computer verifies this against list of passwords
- If computer is broken into, hackers can learn everybody's passwords
 - Use one-way functions, store the result for every valid password
 - Perform one-way function on input, compare result against the list

Password Authentication

- Hackers can compile a list of frequently used passwords, apply one-way function to each and store them in a table – dictionary attack
- Host adds random salt to password, applies one-way function to that and stores result and salt value
 - Randomly generated, unique and long enough
Password Authentication

- Someone sniffing on the network can learn the password
- Lamport hash or S-KEY – time-varying pass
 - To set-up the system, Alice enters
 - random number R
 - Host calculates
 - $x_0 = h(R)$,
 - $x_1 = h(h(R))$,
 - $x_2 = h(h(h(R)))$, ..., x_{100}
 - Alice keeps this list, host sets her password to x_{101}
 - Alice logs on with x_{100}, host verifies $h(x_{100}) = x_{101}$,
 - resets password to x_{100}
 - Next time Alice logs on with x_{99}

Public Key Authentication

- Key Distribution
 - Confidentiality not needed for public key
 - Solves n^2 problem
 - Performance
 - Slower than conventional cryptography
 - Implementations used for key distribution, then
 use conventional crypto for data encryption
- Trusted third party still needed
 - To certify public key
 - To manage revocation
 - In some cases, third party may be off-line

Single Sign-On

- Passport
- Liberty Alliance
- Shibboleth

Federated Identity Passport vs Liberty Alliance

- Two versions of Passport
 - Centralized and federated
- Liberty Alliance
 - Loosely federated with framework to describe
 authentication provided by others

Passport v1

- Goal is single sign-on
 - Solves problem of weak or repeated user/pass combinations
 - Implemented via redirections
 - Users authenticate themselves to a common
 server, which gives them tickets
 - Similar flavor to Kerberos but different
 environment – many organizations
 - Widely deployed by Microsoft
 - Designed to use existing technologies in
 servers/browsers (HTTP redirect, SSL, cookies, Javascript)
How Passport Works

- Client (browser), merchant (Web server), Passport login server
- Passport server maintains authentication info for client
 - Gives merchant access when permitted by client
 - Divides client data into profile (address) and wallet (credit card)

SSL

Token = 3DES encrypted authentication info
using key merchant shares with passport server
Also set cookie at browser

Some Problems with Passport

- User interface is confusing and may misrepresent the reality
- Weak keys may be used for 3DES
- Single key is used to encrypt cookies for all clients
- Cookies stay on machine, can be stolen
 - No authenticator (timestamp), like in Kerberos, enables reuse by others
- Coupling of Hotmail with Passport

Federated Passport

- Multiple federated identity providers
 - E.g. ISPs register own users
 - One can rely on claims made by other ID providers
- Claims
 - Emails, relationships, authorization for scenarios, ownership of private/public key pair
 - Need "translators" for different claim languages

Liberty Alliance

- Design criteria was most of the issues addressed by Federated Passport, i.e. no central authority
- Use SAML (Security Association Markup Language) to describe trust across authorities, and what assertions mean from particular authorities
- Four assurance levels
 - How much we trust a given identity assertion
 - Little, some, high and very high confidence

Read more at http://avirubin.com/passport.html