Dynamic policies
- Change as system security state/load changes
- GAA architecture
 - Extended access control lists
 - Pre-, mid- and post-conditions, request-result conditions
 - Speak about security posture, system states, authentication mechanisms, etc.

Intrusion scenario
- Reconnaissance, scanning, break-in and misuse, maintaining access, covering tracks
- Reconnaissance: low-tech, Web-based

Intrusion scenario
- Reconnaissance, scanning, break-in and misuse, maintaining access, covering tracks

What does DNS do?
- How does DNS work?
- Types of information an attacker can gather:
 - Range of addresses used
 - Address of a mail server
 - Address of a web server
 - OS information
 - Comments

Interrogating DNS – Zone Transfer
$ nslookup
Default server: evil.attacker.com
Address: 10.11.12.13
server 1.2.3.4
Default server: dns.victimsite.com
Address: 1.2.3.4
set type=any
ls -d victimsite.com
system1 1DINA 1.2.2.1
1DINHINFO “Solaris 2.6 Mailserver”
1DMX 10 mail1
web 1DINA 1.2.11.27
1DINHINFO “NT4www”

Split–horizon DNS
- Show a different DNS view to external and internal users

Protecting DNS
- Provide only necessary information
 - No OS info and no comments
- Restrict zone transfers
 - Allow only a few necessary hosts
- Use split–horizon DNS

Reconnaissance Tools
- Tools that integrate Whois, ARIN, DNS interrogation and many more services:
 - Applications
 - Web–based portals
 - http://www.network–tools.com
At The End Of Reconnaissance
- Attacker has a list of IP addresses assigned to the target network
- He has some administrative information about the target network
- He may also have a few “live” addresses and some idea about functionalities of the attached computers

Phase 2: Scanning
- Detecting information useful for break-in
 - Live machines
 - Network topology
 - Firewall configuration
 - Applications and OS types
 - Vulnerabilities

Network Mapping
- Finding live hosts
 - Ping sweep
 - TCP SYN sweep
- Map network topology
 - Traceroute
 - Sends out ICMP or UDP packets with increasing TTL
 - Gets back ICMP_TIME_EXCEEDED message from intermediate routers

Traceroute
1. ICMP_ECHO to www.victim.com
 TTL=1
 1a. ICMP_TIME_EXCEEDED from R1
 A: R1 is my first hop to www.victim.com!

2. ICMP_ECHO to www.victim.com
 TTL=2
 2a. ICMP_TIME_EXCEEDED from R2
 A: R1-R2 is my path to www.victim.com!

3. ICMP_ECHO to www.victim.com
 TTL=3
 3a. ICMP_TIME_EXCEEDED from R3
 A: R1-R2-R3 is my path to www.victim.com!
Traceroute

A: R1-R2-R3-www is my path to www.victim.com

Repeat for db and mail servers

Network Mapping Tools

Cheops
- Linux application
- http://cheops-ng.sourceforge.net/
 Automatically performs ping sweep and network mapping and displays results in GUI

Defenses Against Network Mapping And Scanning

Filter out outgoing ICMP traffic
- Maybe allow for your ISP only
- Use Network Address Translation (NAT)

How NATs Work

For internal hosts to go out
- B sends traffic to www.google.com
- NAT modifies the IP header of this traffic
 - Source IP: B ⇒ NAT
 - Source port: B’s chosen port Y ⇒ random port X
- NAT remembers that whatever comes for it on port X should go to B on port Y
- Google replies, NAT modifies the IP header
 - Destination IP: NAT ⇒ B
 - Destination port: X ⇒ Y

For public services offered by internal hosts
- You advertise your web server A at NAT’s address (1.2.3.4 and port 80)
- NAT remembers that whatever comes for it on port 80 should go to A on port 80
- External clients send traffic to 1.2.3.4:80
- NAT modifies the IP header of this traffic
 - Destination IP: NAT ⇒ A
 - Destination port: A’s service port 80
- A replies, NAT modifies the IP header
 - Source IP: A ⇒ NAT
 - Source port: 80 ⇒ 80
How NATs Work
- What if you have another Web server C
 - You advertise your web server A at NAT’s address (1.2.3.4 and port 55) – not a standard Web server port so clients must know to talk to a diff. port
 - NAT remembers that whatever comes for it on port 55 should go to C on port 80
 - External clients send traffic to 1.2.3.4:55
 - NAT modifies the IP header of this traffic
 - Destination IP: NAT \rightarrow C
 - Destination port: NAT’s port 55 \rightarrow C’s service port 80
 - C replies, NAT modifies the IP header
 - Source IP: C \rightarrow NAT, source port: 80 \rightarrow 55

Port Scanning
- Finding applications that listen on ports
 - Send various packets:
 - Establish and tear down TCP connection
 - Half-open and tear down TCP connection
 - Send invalid TCP packets: FIN, Null, Xmas scan
 - Send TCP ACK packets – find firewall holes
 - Obscure the source - FTP bounce scans
 - UDP scans
 - Find RPC applications

Port Scanning Tools
- Nmap
 - Unix and Windows NT application and GUI
 - http://nmap.org/
 - Various scan types
 - Adjustable timing

Defenses Against Port Scanning
- Close all unused ports
- Remove all unnecessary services
- Filter out all unnecessary traffic
- Find openings before the attackers do
- Use smart filtering, based on client’s IP

Firewalk: Determining Firewall Rules
- Find out firewall rules for new connections
- We don’t care about target machine, just about packet types that can get through the firewall
 - Find out distance to firewall using traceroute
 - Ping arbitrary destination setting TTL=distance +1
 - If you receive ICMP_TIME_EXCEEDED message, the ping went through
Defenses Against Firewalking
- Filter out outgoing ICMP traffic
- Use firewall proxies
 - This defense works because a proxy recreates each packet including the TTL field

Vulnerability Scanning
- The attacker knows OS and applications installed on live hosts
 - He can now find for each combination
 - Vulnerability exploits
 - Common configuration errors
 - Default configuration
- Vulnerability scanning tool uses a database of known vulnerabilities to generate packets
- Vulnerability scanning is also used for sysadmin

Vulnerability Scanning Tools
- SARA
 - http://www-arc.com/sara
- SAINT
 - http://www.saintcorporation.com
- Nessus
 - http://www.nessus.org

Defenses Against Vulnerability Scanning
- Close your ports and keep systems patched
- Find your vulnerabilities before the attackers do

At The End Of Scanning Phase
- Attacker has a list of "live" IP addresses
- Open ports and applications at live machines
- Some information about OS type and version of live machines
- Some information about application versions at open ports
- Information about network topology
- Information about firewall configuration